

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

*	
_	
2	
7	
7	
7	
2	
9	
9	
5	
œ	
*	

CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 (Extended)

October/November 2013

CANDIDATE

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 12 printed pages.

- Zirconium (Zr) is a metal in Period 5. Its main oxidation state is +4.
 - (a) The following are all zirconium atoms: ${}^{90}_{40}$ Zr, ${}^{91}_{40}$ Zr and ${}^{92}_{40}$ Zr.

hydrogen. Write an equation for this reaction.

www.PapaCambridge.com In terms of numbers of electrons, neutrons and protons, how are these three atoms the same and how are they different? They are the same because They are different because **(b)** Containers for fuel rods in nuclear reactors are made of zirconium. Nuclear reactors are used to produce energy and to make radioactive isotopes. (i) Which isotope of a different element is used as a fuel in nuclear reactors? (ii) State one medical and one industrial use of radioactive isotopes.

......[2] (iv) In a nuclear accident, water may come in contact with very hot zirconium. Explain why the presence of hydrogen inside the reactor greatly increases the danger of the accident.

(iii) Above 900 °C, zirconium reacts with water to form zirconium(IV) oxide, ZrO₂, and

......[1]

(c) It is possible to determine whether zirconium(IV) oxide is acidic, neutral, basic or amphoteric using an acid and an alkali. Complete the table of possible results. If the oxide is predicted to react write 'R', if it is predicted not to react write 'NR'.

if the oxide is	predicted result with hydrochloric acid	predicted result with aqueous sodium hydroxide
acidic		
neutral		
basic		
amphoteric		

[4]

[Total: 13]

2 (a) The diagram shows the lattice of a typical ionic compound.

i) Explain the	e term <i>ic</i>	nic lattice.
----------------------------------	------------------	--------------

(ii)

[2]
In this lattice, the ratio of positive ions to negative ions is 1:1. In the lattice of a different ionic compound, the ratio of positive ions to negative ions is 1:0.
is 1:2. Suggest why this ratio varies in different ionic compounds.

[1]

(111)	Give three physical properties of ionic compounds.

[3]

(b) Strontium oxide is an ionic compound. Draw a diagram which shows its formula, the charges on the ions and the arrangement of the **valency** electrons around the negative ion.

The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2.

Use o to represent an electron from a strontium atom.

Use x to represent an electron from an oxygen atom.

[3]

www.PapaCambridge.com

[Total: 9]

- 3 The main uses of zinc are preventing steel from rusting and making alloys.
- www.PapaCambridge.com (a) The main ore of zinc is zinc blende. Zinc blende consists mainly of zinc sulfide, Zh There are two major methods of extracting zinc from its ore. They are the direct reduction of zinc oxide to zinc and by electrolysis. In both methods, zinc oxide is made from the zinc sulfide in the ore.

	(i)	How is zinc oxide made from zinc sulfide?	
	(ii)	Write an equation for the reaction used to reduce zinc oxide to zinc.	
			[1]
(b)		ne electrolytic method, zinc oxide reacts with sulfuric acid to form impure accessulfate. This solution contains Ni ²⁺ , Co ²⁺ and Cu ²⁺ ions as impurities.	Įueous
	(i)	Write the equation for the reaction between zinc oxide and sulfuric acid.	
			[1]
	(ii)	Nickel, cobalt and copper are all less reactive than zinc. Explain why the add zinc powder removes these ions from the solution.	
(c)		solution of zinc sulfate is electrolysed using inert electrodes. selectrolysis is similar to that of copper(Π) sulfate with inert electrodes.	
	(i)	Write the equation for the reaction at the negative electrode (cathode).	
			[1]
	(ii)	Complete the equation for the reaction at the positive electrode (anode).	
		$OH^- \rightarrow 2H_2O + \dots + \dots e^-$	[2]
	(iii)	The electrolyte changes from zinc sulfate to	
			[1]

[Total: 15]

- www.PapaCambridge.com Sulfuric acid is a strong acid. Hexanesulfonic acid is also a strong acid. It has similar pro to sulfuric acid.
 - (a) Sulfonic acids are made from alkanes and oleum, $H_2S_2O_7$.

$$C_6H_{14} + H_2S_2O_7 \rightarrow C_6H_{13}SO_3H + H_2SO_4$$

(i)	Describe how oleum is made from sulfur by the Contact process. Give equations
	and reaction conditions.

	[0]

(ii)	How is concentrated sulfuric acid made from oleum?	
		[1]

(b)	The formula of the nexanesultonate ion is $C_6H_{13}SO_3^-$.
	The formula of the barium ion is Ba ²⁺ . What is the formula of barium hexanesulfonate?

(c)	Complete the following equations.	
	(i) magnesium + hexanesulfonic → +	[1]
	aciu	נין

(iii)
$$C_6H_{13}SO_3H + Na_2CO_3 \rightarrow$$
 + + [2]

ror miner's

[Turn over

[Total: 17]

www.PapaCambridge.com Domestic rubbish is disposed of in landfill sites. Rubbish could include the following 5

item of rubbish	approximate time for item to break down
newspaper	one month
cotton rag	six months
woollen glove	one year
aluminium container	up to 500 years
styrofoam cup	1000 years

(a)	Explain why aluminium, a reactive metal, takes so long to corrode.
	[1]
(b)	Both paper and cotton are complex carbohydrates. They can be hydrolysed to simple sugars such as glucose. The formula of glucose can be represented as:
	но———он
	Draw the structural formula of a complex carbohydrate, such as cotton. Include at least two glucose units.

[2]

(c)	Wo	ol is a protein. It can be hydrolysed to a mixture of monomers by enzymes.	
	(i)	What are enzymes?	3
			1
		[2]	
	(ii)	Name another substance which can hydrolyse proteins.	

.....[1]

(iii) What type of compound are the monomers formed by the hydrolysis of proteins?

(iv) Which technique could be used to identify the individual monomers in the mixture?

(v) Proteins contain the amide linkage. Name a synthetic macromolecule which contains the same linkage.

.....[1]

(d) (i) What is the scientific term used to describe polymers which do not break down in landfill sites?

.....[1]

(ii) Styrofoam is poly(phenylethene). It is an addition polymer. Its structural formula is given below. Deduce the structural formula of the monomer, phenylethene.

$$\begin{array}{c|c}
\hline
 CH_2 & CH \\
 & | \\
 & C_6H_5
\end{array}$$

[1]

[Total: 11]

www.PapaCambridge.com The alcohols form a homologous series. The first five members are given in the table

(a)

6

alcohol	formula	heat of combustion in kJ/mol
methanol	CH ₃ OH	730
ethanol	CH ₃ -CH ₂ -OH	1380
propan-1-ol		
butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	2680
pentan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	3350

	(i)	Complete the table.	[2]
	(ii)	Complete the equation for the combustion of pentan-1-ol in excess oxygen.	
		$C_5H_{11}OH +O_2 \rightarrow$	[1]
(b)		te three characteristics of a homologous series other than the variation of physperties down the series.	sical
			[3]
(c)	The	e following alcohols are isomers.	
		CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH and (CH ₃) ₂ CH-CH ₂ -OH	
	(i)	Explain why they are isomers.	
			[2]

(ii) Draw the structural formula of another isomer of the above alcohols.

[1]

- (d) Alcohols can be made by fermentation and from petroleum.
 - (i) Ethanol is made from sugars by fermentation.

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

The state of the s			
	ohols can be made by fermentation and from petroleum. Ethanol is made from sugars by fermentation. $C_6H_{12}O_6 \ \to \ 2C_2H_5OH \ + \ 2CO_2$ The mass of one mole of glucose, $C_6H_{12}O_6$, is 180 g.		
Alc	ohols can be made by fermentation and from petroleum.		
(i)	Ethanol is made from sugars by fermentation.		
	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$		
	The mass of one mole of glucose, $C_6H_{12}O_6$, is 180 g. Calculate the maximum mass of ethanol which could be obtained from 72 g of glucose.		
	[3]		
(ii)	Describe how ethanol is made from petroleum.		
	petroleum (alkanes) $ ightarrow$ ethene $ ightarrow$ ethanol		
	[3]		
	[Total: 15]		

DATA SHEET	The Periodic Table of the Elements
------------	------------------------------------

			12	173
0	4 He lium	20 Neon 10 African Argon 18 Argon 18	Kr Kr 131 Xe Xeon Xeon Xeon Xeon Xeon Xeon	Luetum 771 Luetum 173 Luetum 173 Luetum 173
=		19 Fluorine 9 35.5 C1	80 Br Br 127 I 127 I Solodine	Y Y Y N'terfolum 70 N O NO entum 102
>		16 Oxygen 8 32 Suffur 16	79 Secretum 34 Teb Teb Teburuum 52 Pooretum 84 Secretum 84 Secretum 84 Secretum 84 Secretum 84 Secretum 85 Secretum 84 Secretum 85 Secretum 86 Secretu	Tm Trufium 69 Md Mendelevium 101
>		Nitrogen 7 31 31 Phosphorus 15	75 As Avsenic 33 Avsenic 122 Sb Antimony 51 Bismuth 83	Erteum 68 Fm Fm 100 To 100 Fm
≥		Carbon 6 28 Silicon 14	73 Germanlum 32 119 119 50 Tin 50 Pb 82 Lead	165 Ho Holmlum 67 Einsteinlum 99 (r.t.p.).
≡		11 B Boron 5 27 A1 Aluminium 13	70 Ga Saltum 31 115 In Indum 49 204 T. Thaillum	Ce Pr Ndd Pm Samarium 150 152 157 159 162 165 160 <th< td=""></th<>
			65 Zn Znc 30 Znc 4112 Cd Cd Cd Cadmium 48 Nercury 80 Nercury	Territum 65 BK Berkeilum 97 atture and
			64 Cupper 29 Copper 108 Ag Silver 197 Au Coold A	Gadolinium 64 Cm Cm 2001 Cm 96 Curium 96 Cm 16 C
Group			28 Nickel 28 Nickel 28 106 Pd	152 Europium 63 Am Amaricium 95 m3 at rooi
์ วั		1	59 Cobalt 27 Cobalt 103 Rh Rhodum 45 Indium 177	Smartum 62 Samartum 62 Pu Plutonium 94 as is 24 d
	T Hydrogen		26 Iron 26 Iron 101 Ru Ruthenlum 44 OS	Pm Promethlum 61 Np
			Mn Manganese 25 Trechnetium 43 186 Remium	Nacotymium 60 C38 C38 U C C C C C C C C C C C C C C C C C C
			52 Cromium 24 Mo Mo Maybdenum 42 Natybdenum 42 Tungsten 74	Praseodymum 59 Protectinium 91 Protectinium 91 Olume of c
			51 V Vanadium 23 83 NB NObium 41 181 Ta Tanahum 73	140 Ce certum 58 Th
			Tritamium 22 P1 91 P1	mnic mass mbol number
			Scandum 21	ss sate (atc (atc
=		Be Beryllium 4 24 Magnesium 12	Calcium 20 Catclum 20 St Strontum 38 Strontum 38 Strontum 38 Ba	Fr Ra Ac Ac Ac Ac Ac Ac Ac A
-		Lithium 3 23 8 8 Sodium 11	39 K Potassium 19 85 RB Rubidium 37 133 CS Caesium 55	#Francium 87 Francium 87 Francium 87 * 58-71 L 190-103.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.